Jensen's covering theorem
In set theory, Jensen's covering theorem states that if 0# does not exist then every uncountable set of ordinals is contained in a constructible set of the same cardinality. Informally this conclusion says that the constructible universe is close to the universe of all sets. The first proof appeared in (Devlin & Jensen 1975). Silver later gave a fine structure free proof using his machines and finally Magidor (1990) gave an even simpler proof.
The converse of Jensen's covering theorem is also true: if 0# exists then the countable set of all cardinals less than ℵω cannot be covered by a constructible set of cardinality less than ℵω.
In his book Proper Forcing, Shelah proved a strong form of Jensen's covering lemma.
References
- Devlin, Keith I.; Jensen, R. Björn (1975), "Marginalia to a theorem of Silver", ISILC Logic Conference (Proc. Internat. Summer Inst. and Logic Colloq., Kiel, 1974), Lecture notes in mathematics, 499, Berlin, New York: Springer-Verlag, pp. 115–142, doi:10.1007/BFb0079419, ISBN 978-3-540-07534-9, MR0480036, http://books.google.com/books?id=9UHU_bq-wc8C&dq=Marginalia+to+a+theorem+of+Silver
- Magidor, Menachem (1990), "Representing sets of ordinals as countable unions of sets in the core model", Transactions of the American Mathematical Society 317 (1): 91–126, doi:10.2307/2001455, ISSN 0002-9947, MR939805
- Mitchell, William (2010), "The covering lemma", Handbook of Set Theory, Springer, pp. 1497–1594, doi:10.1007/978-1-4020-5764-9_19, ISBN 978-1-4020-4843-2, http://www.springerlink.com/content/u6g5311h23232h02/
- Shelah, Saharon (1982), Proper forcing, Lecture Notes in Mathematics, 940, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0096536, ISBN 978-3-540-11593-9, MR675955
‹The stub template below has been proposed for renaming to . See stub types for deletion to help reach a consensus on what to do.
Feel free to edit the template, but the template must not be blanked, and this notice must not be removed, until the discussion is closed. For more information, read the guide to deletion.›